We previously found that epigallocatechin-3-gallate (EGCG) could inhibit the myofibroblast transformation of human Tenon’s fibroblasts, however, the underlying mechanism remained unclear. We therefore investigated whether the autophagic regulation involved in the anti-fibrotic function of EGCG. The fibroblasts were subjected to transforming growth factor beta-1 (TGF-β1) induction followed by EGCG treatments. The autophagic flux was examined by transmission electron microscopy and autophagic flux analysis. The levels of autophagy-related proteins (LC3β and p62) and alpha-smooth muscle actin (α-SMA) were measured by Western blot and immunofluorescence. Results showed that TGF-β1 partially inhibited the autophagic function of Tenon’s fibroblasts. But this inhibition effect was rescued by LY2157299, a TGF-βR1 selective inhibitor. Compared with the cells treated with TGF-β1 alone, EGCG treatments increased the amount of autophagosomes and autolysosomes, evaluated the ratio of LC3-II to LC3-I and decreased p62 level. Our results indicated that EGCG could recover the activity of autophagy in the TGF-β1-treated cells. Moreover, treatments with EGCG significantly decreased the α-SMA expression. Taken together, these findings revealed that autophagic regulation involved in the action of EGCG against TGF-β1-induced transformation of Tenon’s fibroblasts. Through increasing intracellular autophagy, EGCG could be a potential anti-fibrotic reagent for preventing subconjunctival fibrosis after glaucoma filtration surgery.
About The Expert
Yu Lin Zhang
Yu Qiao Zhang
Hong Liang Lin
Yong Jie Qin
Jin Zeng
Yan Lei Chen
Yong Yi Niu
Chi Pui Pang
Wai Kit Chu
Hong Yang Zhang
References
PubMed