Artificial intelligence (AI) has penetrated the field of medicine, particularly the field of radiology. Since its emergence, the highly virulent coronavirus disease 2019 (COVID-19) has infected over 10 million people, leading to over 500,000 deaths as of July 1st, 2020. Since the outbreak began, almost 28,000 articles about COVID-19 have been published (https://pubmed.ncbi.nlm.nih.gov); however, few have explored the role of imaging and artificial intelligence in COVID-19 patients-specifically, those with comorbidities. This paper begins by presenting the four pathways that can lead to heart and brain injuries following a COVID-19 infection. Our survey also offers insights into the role that imaging can play in the treatment of comorbid patients, based on probabilities derived from COVID-19 symptom statistics. Such symptoms include myocardial injury, hypoxia, plaque rupture, arrhythmias, venous thromboembolism, coronary thrombosis, encephalitis, ischemia, inflammation, and lung injury. At its core, this study considers the role of image-based AI, which can be used to characterize the tissues of a COVID-19 patient and classify the severity of their infection. Image-based AI is more important than ever as the pandemic surges and countries worldwide grapple with limited medical resources for detection and diagnosis.Copyright © 2020 Elsevier Ltd. All rights reserved.
About The Expert
Jasjit S Suri
Anudeep Puvvula
Mainak Biswas
Misha Majhail
Luca Saba
Gavino Faa
Inder M Singh
Ronald Oberleitner
Monika Turk
Paramjit S Chadha
Amer M Johri
J Miguel Sanches
Narendra N Khanna
Klaudija Viskovic
Sophie Mavrogeni
John R Laird
Gyan Pareek
Martin Miner
David W Sobel
Antonella Balestrieri
Petros P Sfikakis
George Tsoulfas
Athanasios Protogerou
Durga Prasanna Misra
Vikas Agarwal
George D Kitas
Puneet Ahluwalia
Raghu Kolluri
Jagjit Teji
Mustafa Al Maini
Ann Agbakoba
Surinder K Dhanjil
Meyypan Sockalingam
Ajit Saxena
Andrew Nicolaides
Aditya Sharma
Vijay Rathore
Janet N A Ajuluchukwu
Mostafa Fatemi
Azra Alizad
Vijay Viswanathan
Pudukode R Krishnan
Subbaram Naidu
References
PubMed