Intratumoural hypoxia is a common characteristic of malignant treatment-resistant cancers. However, hypoxia-modification strategies for the clinic remain elusive. To date little is known on the behaviour of individual hypoxic tumour cells in their microenvironment. To explore this issue in a spatial and temporally-controlled manner we developed a genetically encoded sensor by fusing the O2-labile Hypoxia-Inducible Factor 1α to eGFP and a tamoxifen-regulated Cre recombinase. Under normoxic conditions HIF-1α is degraded but under hypoxia, the HIF-1α-GFP-Cre-ERT2 fusion protein is stabilised and in the presence of tamoxifen activates a tdTomato reporter gene that is constitutively expressed in hypoxic progeny. We visualise the random distribution of hypoxic tumour cells from hypoxic or necrotic regions and vascularised areas using immunofluorescence and intravital microscopy. Once tdTomato expression is induced, it is stable for at least 4 weeks. Using this system, we could show that the post-hypoxic cells were more proliferative in vivo than non-labelled cells. Our results demonstrate that single-cell lineage tracing of hypoxic tumour cells can allow visualisation of their behaviour in living tumours using intravital microscopy. This tool should prove valuable for the study of dissemination and treatment response of post-hypoxic tumour cells in vivo at single-cell resolution.
© 2020. Published by The Company of Biologists Ltd.

Author