As a dominant cardiovascular disease, myocardial infarction (MI) causes a considerable mortality globally. KCNQ1 overlapping transcript 1 (KCNQ1OT1) was reported to be overexpressed in MI patients. However, the detailed mechanisms remain unclear.
We analyzed the expression of KCNQ1OT1 in the serum of MI patients, and built ischemia/reperfusion (I/R) mouse and H/R-induced cell model. TTC staining was used to evaluate infarct size in mice. TUNEL was employed to assess cell apoptosis. QRT-PCR was performed to detect the expression of KCNQ1OT1 and miR-26a-5p. The formation of autophagosomes in cells was detected by immunofluorescence. Caspase3 activity was detected by the Caspase-3 Assay Kit. Autophagy and apoptosis-related proteins were assessed by western blotting. Luciferase reporter assay was used to assess the binding relationship of KCNQ1OT1 and miR-26a-5p and miR-20a-5p/ATG12.
KCNQ1OT1 was up-regulated while miR-26a-5p was decreased in MI patients, I/R mouse and H/R-induced cell model. KCNQ1OT1 knockdown inhibited cell autophagy and protected cardiomyocytes from apoptosis by up-regulating miR-26a-5p. Either KCNQ1OT1 knockdown or miR-26a-5p mimics caused inhibition of autophagy related 12 homolog (ATG12), which was the direct target of miR-26a-5p. In vivo, KCNQ1OT1 promoted cardiomyocytes apoptosis via miR-26a-5p/ATG12 pathway.
KCNQ1OT1/miR-26a-5p/ATG12 axis regulated cardiomyocyte autophagy and apoptosis, both in vivo and in vitro. These data supported that KCNQ1OT1 inhibition might be a promising therapeutic option for protection after MI.
Copyright © 2021. Published by Elsevier B.V.
About The Expert
Jinbei Li
Yalin Tong
Yanjun Zhou
Zhanying Han
Xule Wang
Tongbin Ding
Yongsheng Qu
Zhiliang Zhang
Chao Chang
Xiaoli Zhang
Chunguang Qiu
References
PubMed