The first patient-specific biomechanical model for planning the surgical reduction of acetabular fractures was developed in our institution and validated retrospectively. There are no prior studies showing its effectiveness in terms of reduction quality, operative duration and intraoperative bleeding. Therefore, we performed a case control study aiming to: 1) evaluate the effect of preoperative simulation by patient-specific biomechanical simulator on the operating time and intraoperative bleeding, 2) evaluate the effect of preoperative simulation by patient-specific biomechanical simulator on the quality of reduction.
All patients operated on between January 2019 and June 2019 after planning by biomechanical simulation were included in this case-control study. Each patient included was matched to 2 controls from our database (2015-2018) according to age and fracture-type. DICOM data were extracted from the preoperative high-resolution scanners to build a three-dimensional model of the fracture by semi-automatic segmentation. A biomechanical model was built to virtually simulate the different stages of surgical reduction. Surgery was then performed according to simulation data. Surgical duration, blood loss, radiological findings and intraoperative complications were recorded, analysed and compared.
Thirty patients were included, 10 in the simulation group and 20 in the control group. The two groups were comparable in terms of age, time from accident to surgery, fracture-type and surgical approach. The mean operative time was significantly reduced in the simulation group: 113 min ± 33 (60-180) versus 196 min ± 32 (60-260) (p=0.01). Mean blood loss was significantly reduced in the simulation group: 505 mL ± 189 (100-750) versus 745 mL ± 130 (200-850) (p<0.01). However, no significant difference was found in the radiological results according to Matta's criteria, although an anatomical reduction was obtained for 9 patients in the simulation group (90%) versus 12 patients in the control group (60%) (p=0.26). A postoperative neurological complication was recorded in the control group (sensory deficit of the lateral cutaneous nerve of thigh).
This study confirms the promising results of preoperative planning in acetabular trauma surgery based on patient-specific biomechanical simulation as well as its feasibility in routine clinical practice. By providing a better understanding of the fracture and its behavior, a reduction in intraoperative bleeding and in operative duration is achieved.
III; Case-control study.

Copyright © 2021 Elsevier Masson SAS. All rights reserved.

Author