Objectives Despite the existence of several online treatments for people with posttraumatic stress disorder (PTSD), few studies have examined usage data for such interventions. Given the potential of the online modality to alleviate barriers limiting access to psychological help, it is important to document users’ interactions with these tools in relation to the improvement of targeted symptoms. The objective of this study is to document usage data of the online treatment platform RESILIENT by people evacuated from the Fort McMurray, Alberta (Canada) fires, and to examine their association with the effectiveness of treatment on symptoms of posttraumatic stress disorder (PTSD), insomnia and depression, and adherence to treatment, as measured by the number of modules accessed by participants. Methods Ninety-seven people evacuated from the Fort McMurray fires with symptoms of PTSD, insomnia and depression were included in this study. Participants were invited to use the RESILIENT platform, an online therapist-assisted self-help treatment program that targets PTSD symptoms, sleep and mood, and includes 12 modules offering evidence-based cognitive-behavioural therapy (CBT) strategies. Both objective (e.g., number of modules accessed) and subjective (e.g., level of effort invested) usage data were collected. Results In order to predict the reduction in PTSD, depression and insomnia symptoms, as well as the number of modules accessed by participants, sequential regression models were conducted, with statistical control for pretreatment symptoms, age and gender. The final models revealed that a reduction in PTSD, depression and insomnia symptoms was significantly predicted by the number of modules accessed (β = -.41; -.53; -.49 respectively, all p <.001) as well as the mean self-reported level of effort at module 7 (midway) (β = -.43; p <.001; β = -.38; p = .005 and β = -.36; p = .007 respectively). The number of modules accessed, on the other hand, was significantly predicted by the number of words in the 4th module (β = .34; p <.001) and 7th module (β = .44; p <.001) and the number of sleep diary entries (β = .28; p <.001). Conclusion These results confirmed that increased interaction with the platform positively influences treatment effectiveness and that increased use at the beginning of treatment appears to be a good predictor of treatment completion. This study confirms the importance of sustaining participants' commitment to online treatment in order to optimize its effectiveness.

Author