MicroRNAs (miRNAs) play a crucial role in cell differentiation through epigenetic regulation of gene expression. In human dental pulp cells, we have identified miRNA-27a being upregulated under inflammatory conditions. Here, we aimed to examine whether (i) overexpression of miRNA-27a in human dental pulp stem cells (hDPSCs) enhances their odonto/osteoblastic differentiation via Wnt and bone morphogenetic protein signaling; and (ii) hDPSCs overexpressing miRNA-27a promote new bone formation in vivo.
hDPSCs were cultured in osteogenic medium to promote differentiation. To examine the role of miRNA-27a, hDPSCs were transfected with either a miRNA-27a mimic to enhance or an inhibitor to suppress miRNA-27a expression. Odonto/osteoblastic differentiation was assessed by evaluating the expression of specific markers, Wnt and bone morphogenetic protein (BMP) signaling molecules, and mineralization capacity using RT-qPCR, western blotting, Alizarin Red S (ARS) staining, and alkaline phosphatase (ALP) activity. Potential miRNA-27a binding sites in the 3’UTRs of DKK3 and SOSTDC1 were identified via bioinformatics analysis and validated through the luciferase reporter assay. In vivo, miRNA-27a-overexpressing hDPSCs were seeded into collagen honeycomb scaffolds and implanted into mouse calvarial bone cavities to assess new bone formation.
MiRNA-27a was highly upregulated in hDPSCs committed to odonto/osteoblastic differentiation. Overexpression of miRNA-27a led to increased expression of odonto/osteoblastic markers and enhanced mineralization capacity, while inhibition of miRNA-27a had the opposite effect. MiRNA-27a targeted DKK3, promoting β-catenin nuclear translocation and inhibiting SOSTDC1, which enhanced SMAD1/5 phosphorylation. Binding sites for miRNA-27a were identified in the 3’UTRs of DKK3 and SOSTDC1. In vivo, miRNA-27a-overexpressing hDPSCs promoted new bone formation in mouse calvaria bone cavities.
Transfection of miRNA-27a in hDPSCs enhanced their odonto/osteoblastic differentiation by targeting DKK3 and SOSTDC1, thereby promoting the Wnt and BMP signaling. Transplantation of miRNA-27a-overexpressing hDPSCs promoted new bone formation in vivo. These findings deepen our understanding of the effects of miRNA on Wnt and BMP pathways and suggest a potential clinical application for miRNA-27a in promoting hard tissue regeneration, offering a promising therapeutic target for dental and craniofacial tissue reconstruction.
© 2025. The Author(s).