Sepsis-associated acute kidney injury (AKI) poses a severe threat to patients’ lives and health, making early predictions, intervention, and treatment crucial. This study aims to preliminarily explore the clinical role of miR-577 and miR-494-3p in sepsis-associated AKI. The study included 70 sepsis patients with AKI, 65 sepsis patients without AKI, and a healthy control group (HC, n = 67) to set baseline miRNA levels. Urinary miR-577 and miR-494-3p levels were measured using qRT-PCR. ROC curves evaluated their diagnostic value for sepsis-associated AKI. Logistic regression analyzed AKI risk factors, while Pearson correlation explored miRNA-clinical indicator links. Cox regression models and KM curves assessed the prognostic value of miRNAs in sepsis-associated AKI patients. Sepsis-associated AKI patients showed heightened inflammatory markers, renal indicators, and APACHE II scores compared to those without AKI. However, their urinary miR-577 and miR-494-3p levels were notably lower, distinguishing them with high diagnostic value. These miRNAs inversely correlated with inflammatory markers, renal indicators, and severity scores. Logistic regression showed lactate, PCT, BUN, Scr, Cys-C, NGAL, KIM-1, and APACHE II, as risk factors, while miR-577 and miR-494-3p were protective. In deceased sepsis-associated AKI patients, these miRNAs were lower, with higher inflammatory markers, renal indicators, and severity scores. miR-577 and miR-494-3p independently predicted mortality, with lower expressions linked to higher death rates. miR-577 and miR-494-3p are closely related to sepsis-associated AKI and can serve as potential biomarkers for diagnosis and prognostic assessment.© 2025 The Societies and John Wiley & Sons Australia, Ltd.
Create Post
Twitter/X Preview
Logout