The emergence of antibiotic-resistant and phage-resistant strains of Mycobacterium tuberculosis (M. tuberculosis) necessitates improving new therapeutic plans. The objective of the current work was to ensure the effectiveness of rifampicin and the mycobacteriophage LysB D29 enzyme in the treatment of MDR-TB infection, where new and safe metal-organic framework (MOF) nanoparticles were used in combination. UiO-66 nanoparticles were synthesized under mild conditions in which the antimycobacterial agent (rifampicin) was loaded (Rif@UiO-66) and LysB D29 enzyme immobilized onto Rif@UiO-66, which were further characterized. Subsequently, the antibacterial activity of different ratios of Rif@UiO-66 and LysB/Rif@uio-66 against the nonpathogenic tuberculosis model Mycobacterium smegmatis (M. smegmatis) was evaluated by minimum inhibitory concentration (MIC) tests. Impressively, the MIC of LysB/Rif@uio-66 was 16-fold lower than that of pure rifampicin. In vitro and in vivo toxicity studies proved that LysB/Rif@UiO-66 is a highly biocompatible therapy for pulmonary infection. A biodistribution assay showed that LysB/Rif@UiO-66 showed a 5.31-fold higher drug concentration in the lungs than free rifampicin. A synergistic interaction between UiO-66, rifampicin and the mycobacteriophage lysB D29 enzyme was shown in the computational method (docking). Therefore, all results indicated that the LysB/Rif@UiO-66 nanocomposite exhibited promising innovative enzyme-antibiotic therapy for tuberculosis treatment.Copyright © 2024. Published by Elsevier B.V.