BCL6 is a transcriptional repressor that regulates multiple genes involved in immune cell differentiation, DNA damage repair, cell cycle, and apoptosis, and is a carcinogenic factor in acute myeloid leukemia (AML). AML is one of the four major types of leukemia with the 5-year survival rate of patients is less than 20% and chemotherapy resistance remains the major obstacle to the treatment failure of AML. We identified WK499, a small molecule compound that can bind to BCL6 structure. Treatment with WK499 hinders the interactions between BCL6 with its corepressor proteins, resulting in a remarkable change of BCL6 downstream genes and anti-proliferative effects in AML cells, and inducing cell cycle arrest and apoptosis. We verified that AraC and DOXo could induce BCL6 expression in AML cells, and found that WK499 had a synergistic effect when combined with chemotherapeutic drugs. We further proved that WK499 and AraC could achieve a better result of inhibiting the growth of AML in vivo. These findings indicate that WK499, a small molecule inhibitor of BCL6, not only inhibits the proliferation of AML, but also provides an effective therapeutic strategy for increasing AML sensitivity to chemotherapy.Copyright © 2023. Published by Elsevier Masson SAS.