As particulate matter (PM) poses an increasing risk, research on its correlation with diseases is active. However, researchers often use their own PM, making it difficult to determine its components. To address this, we investigated the effects of PM with known constituents on BEAS-2B cells, examining cytokine levels, reactive oxygen species ROS production, DNA damage, and MAPK phosphorylation. Additionally, we evaluated the effects of PM on normal and OVA-induced asthmatic mice by measuring organ weight, cytokine levels, and inflammatory cells in bronchoalveolar lavage fluid, and examining histological changes. PM markedly increased levels of IL-6, GM-CSF, TNF-α, ROS, nitric oxide, and DNA damage, while surprisingly reducing IL-8 and MCP-1. Moreover, PM increased MAPK phosphorylation and inhibited mTOR and AKT phosphorylation. In vivo, lung and spleen weights, IgE, OVA-specific IgE, IL-4, IL-13, total cells, macrophages, lymphocytes, mucus generation, and LC3II were higher in the asthma group. PM treatment in asthmatic mice increased lung weight and macrophage infiltration, but decreased IL-4 and IL-13 in BALF. Meanwhile, PM treatment in the Nor group increased total cells, macrophages, lymphocytes, and mucus generation. Our study suggests that PM may induce and exacerbate lung disease by causing immune imbalance via the MAPK and autophagy pathways, resulting in decreased lung function due to increased smooth muscle thickness and mucus generation.Copyright © 2023 Elsevier B.V. All rights reserved.