Subdural hematoma (SDH) refers to the collection of blood between the dura matter and the arachnoid membrane. Advancements in imaging technology have enabled the categorization of SDH based on specific imaging characteristics, causative factors, and the onset of symptoms. Given that the prognosis of SDHs varies significantly and is contingent upon the size and chronicity of the hemorrhage, a comprehensive understanding of its subtypes may carry crucial treatment implications. For example, an acute SDH classically results from severe traumatic brain injury and appears as a homogenous, crescent-shaped hyperdense extra-axial collection. If not treated, over the course of 1-3 weeks, this hematoma will evolve into a sub-acute phenotype as a consequence of subdural effusion and demonstrate mixed-density hemorrhage on imaging. Chronic SDH (cSDH) becomes the end result of an untreated SDH, with neo-membranization and neo-angiogenesis from branches of the middle meningeal artery driving a mass-like growth pattern. This review article aims to elucidate the complex anatomical features of the end-stage cSDH, with a particular focus on reconceptualization of this entity based on its mass-like growth patterns, and how this is driving a shift towards endovascular treatment.