Over the past decade, we described a novel tumour targeted approach that sought to design “combi-molecules” to hit two distinct targets in tumour cells. Here, to generate small combi-molecules with strong DNA damaging potential while retaining EGFR inhibitory potency, we developed the first synthetic strategy to access the 6-N, N-disubstituted quinazoline scaffold and designed JS61 to possess a nitrogen mustard function directly attached to the 6-position of the quinazoline ring. We compared its biological activity with that of structures containing either a hemi mustard or a non-alkylating substituent. Surprisingly, the results showed that JS61, while capable of inducing strong DNA damage, exhibited moderate EGFR inhibitory potency. In contrast, “combi-molecules” with no bulky substituent at the N-6 position (e.g. ZR2002 and JS84) showed stronger EGFR and growth inhibitory potency than JS61 in a panel of lung cancer cells. To rationalize these results, X-ray crystallography and molecular modeling studies were undertaken, and the data obtained indicated that bulkiness of the 6-N,N-disubstituted moieties hinder its binding to the ATP site and affects binding reversibility.
Copyright © 2020. Published by Elsevier Masson SAS.

Author