Bee venom is secreted by a gland in the abdominal cavity of bees. The venom, especially that of honeybees, contains certain enzymes and peptides that, when administered in high doses, are effective against various diseases. Peptides such as melittin and phospholipase A can target various cancer cells. In this study, we investigated the antiproliferative effects of administering low-dose bee venom in K-562 chronic myeloid leukaemia cells. Our proteomic study revealed regional variation of the content of bee venom and high levels of melittin, apamin and secapin, as well as phospholipase A and hyaluronidase. In addition, eight new, previously unidentified proteins were identified. The effects of bee venom on cell viability and drug-cell interaction were investigated at 24, 48 and 72 h. According to the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) results, the bee venom decreased K-562 cell viability dose-dependently at all time points. Cell viability decreased 48 and 72 h after bee venom administration but increased in the control group left untreated for 72 h. The inhibition percentages for the highest bee venom concentration (0.4 µM) at 24, 48 and 72 h were 55%, 80% and 92%, respectively. The cell-drug interactions indicated that the cell surfaces, which were smooth and clear before drug application, gradually deteriorated and started to shrink after the application. In conclusion, at increasing doses, bee venom was found to have a strong antiproliferative effect in K-562 chronic myeloid leukaemia cell lines.© 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.