Resistive switching (RS) devices are promising forms of non-volatile memory. However, one of the biggest challenges for RS memory applications is the device-to-device (D2D) variability, which is related to the intrinsic stochastic formation and configuration of oxygen vacancy (V) conductive filaments. In order to reduce the D2D variability, control over the formation and configuration of oxygen vacancies is paramount. In this study, we report on the Zr doping of TaOx-based RS devices prepared by pulsed laser deposition as an efficient means of reducing the Vformation energy and increasing the confinement of conductive filaments, thus reducing D2D variability. Our findings were supported by X-ray photoelectron spectroscopy, spectroscopic ellipsometry and electronic transport analysis. Zr doped films showed increased Vconcentration and more localized Vs, due to the interaction with Zr. DC and pulse mode electrical characterization showed that the D2D variability was decreased by a factor of seven, the resistance window was doubled, and a more gradual and monotonic long-term potentiation/depression in pulse switching was achieved in forming-free Zr:TaOdevices, thus displaying promising performance for artificial synapse applications.
Creative Commons Attribution license.

Author