Evaluation of dietary interventions with regard to fertility problems often observed in ruminant livestock is of global interest. Though the effects of polyphenol supplementation in ruminants on digestion and food quality are well described, the impact on reproductive tissues and fluids remains scarcely investigated. These compounds protect dietary unsaturated fatty acids (FA) from oxidation and biohydrogenation and thus saturation. In addition, modification of the expression of genes associated with FA metabolism may occur. Therefore, we characterized for the first time the FA profiles of reproductive tissues and fluids and investigated their potential modification by dietary polyphenols in 22 cyclic ewes. The animals were randomly divided into four groups and fed a basal diet of meadow hay and one of four concentrate types either non-supplemented (control) or supplemented with grape seed extract, Acacia mearnsii bark extract (13 g/kg dry matter (DM) each) or a combination of both (26 g/kg DM). After 10 weeks of feeding, the animals were slaughtered. Samples of reproductive (oviduct, uterus) and metabolically differently active tissues (liver, muscle, adipose) as well as of plasma and fluids from oviduct and uterus were analysed for their FA composition. In addition, the expression of lipid metabolic and antioxidant genes was analysed in all tissues except the adipose tissue. Fatty acid profiles in tissues and fluids as well as gene expression in tissues significantly differed between the different fluids and tissues. In contrast, only a few diet and matrix (fluid or tissue) × diet interactions were observed. Still, the FA profile of the uterus was the only one not at all affected by the diet. The mRNA expression was not affected by the diet for most of the genes investigated, which might in part be explained by the similar plasma polyphenol concentrations found at slaughter. Overall, our findings contribute to an improved understanding of the characteristic FA composition of reproductive tissues and fluids in sheep. In addition, the effect of polyphenols on different tissues, fluids and tissue gene expression has been confirmed as described in other animal species.
Copyright © 2020 Elsevier Inc. All rights reserved.

Author