Escherichia coli is a commensal bacterial species in the human gastrointestinal tract; however, it could be pathogenic and cause severe infections in intra and extra-intestinal sites. Uropathogenic E. coli accounts for 80-90% of urinary tract infections that can result in urosepsis and septic shock. Consequently, multidrug-resistant uropathogenic E. coli poses a considerable risk to the healthcare system worldwide. Phage therapy is demonstrated as an optimistic solution to over-the-counter antibiotics that contribute to the global issue of multidrug-resistant bacteria. This study aims to isolate a novel phage that could be implemented to cure urinary tract infections mediated by multidrug-resistant E. coli. Twenty-seven E. coli isolates were collected from patients with urinary tract infections to assess the antibacterial efficacy of phage vB_Ec_ZCEC14. Phage kinetics were encountered against the E. coli strain (EC/4), in addition to evaluating phage stability under various temperatures, pH values, and UV exposure periods. Full genome sequencing and morphological analysis were conducted for further phage characterization, which revealed that phage vB_Ec_ZCEC14 belongs to the family Straboviridae. Phage vB_Ec_ZCEC14 showed thermal tolerance at 80 ℃, pH stability between pH 3 and pH 12, and endurance to UV exposure for 45 min. The phage-host interaction results revealed that phage vB_Ec_ZCEC14 has strong and steady antibacterial action at lower concentrations (MOI 0.1). The study findings strongly indicate that phage vB_Ec_ZCEC14 holds significant promise as a potential therapeutic alternative for treatment of antibiotic-resistant uropathogenic E. coli.© 2024. The Author(s).