The timely diagnosis of medical conditions, particularly diabetic retinopathy, relies on the identification of retinal microaneurysms. However, the commonly used retinography method poses a challenge due to the diminutive dimensions and limited differentiation of microaneurysms in images.
Automated identification of microaneurysms becomes crucial, necessitating the use of comprehensive ad-hoc processing techniques. Although fluorescein angiography enhances detectability, its invasiveness limits its suitability for routine preventative screening.
This study proposes a novel approach for detecting retinal microaneurysms using a fundus scan, leveraging circular reference-based shape features (CR-SF) and radial gradient-based texture features (RG-TF).
The proposed technique involves extracting CR-SF and RG-TF for each candidate microaneurysm, employing a robust back-propagation machine learning method for training. During testing, extracted features from test images are compared with training features to categorize microaneurysm presence.
The experimental assessment utilized four datasets (MESSIDOR, Diaretdb1, e-ophtha-MA, and ROC), employing various measures. The proposed approach demonstrated high accuracy (98.01%), sensitivity (98.74%), specificity (97.12%), and area under the curve (91.72%).
The presented approach showcases a successful method for detecting retinal microaneurysms using a fundus scan, providing promising accuracy and sensitivity. This non-invasive technique holds potential for effective screening in diabetic retinopathy and other related medical conditions.
© 2024. The Author(s), under exclusive licence to Springer Nature B.V.