Bacterial cellulose (BC), prepared from two recently developed thermotolerant bacterial strains (Komagataeibacter xylinus C30 and Komagataeibacter oboediens R37-9), were used as a raw material to synthesize nanofibril films. Field-emission scanning electron microscope (FE-SEM) observations confirmed the ultrafine nano-structure of BC pellicle (BCP) with average fibril widths between 50 and 60 nm. The BC was directly oxidized in a TEMPO/NaBr/NaClO system at pH of 10 for 2 h. TEMPO-oxidized bacterial cellulose nanofibrils (TOBCN) were obtained by a mild mechanical treatment and the TOBCN films were prepared through heat-drying. The oxidation yielded a recovery ratio between 70 and 80% by weight with an increase in the carboxylate content of 0.9-1.0 mmol g . Nanofibrillation yields were more than 90% and the resulting high aspect ratio TOBCNs were ~6 nm in average width with >800 nm in lengths, when observed under transmission electron microscope (TEM). TOBCN film of K. xylinus C30 exhibited high transparency (79%), tensile strength (142 MPa), Young’s modulus (7.13 GPa), elongation around failure (3.89%), and work of fracture (2.29 MJ m), when compared to the TOBCN films of K. oboediens R37-9 at 23 °C and 50% RH. Coefficients of thermal expansion of both the TOBCN films were low at around 6 ppm K.
Copyright © 2018. Published by Elsevier B.V.

Author